An efficient divide-and-conquer cascade for nonlinear object detection

  • Christoph H. Lampert
  • Published 2010 in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Abstract

We introduce a method to accelerate the evaluation of object detection cascades with the help of a divide-and-conquer procedure in the space of candidate regions. Compared to the exhaustive procedure that thus far is the state-of-the-art for cascade evaluation, the proposed method requires fewer evaluations of the classifier functions, thereby speeding up the search. Furthermore, we show how the recently developed efficient subwindow search (ESS) procedure [11] can be integrated into the last stage of our method. This allows us to use our method to act not only as a faster procedure for cascade evaluation, but also as a tool to perform efficient branch-and-bound object detection with nonlinear quality functions, in particular kernelized support vector machines. Experiments on the PASCAL VOC 2006 dataset show an acceleration of more than 50% by our method compared to standard cascade evaluation.

Topics

25 Figures and Tables

Download Full PDF Version (Non-Commercial Use)